008 |
|
200612s2020 cc a b 001 0 eng d |
020 |
|
|a1492041653 (pbk.)
|
020 |
|
|a9781492041658 (pbk.) :|cUS69.99
|
040 |
|
|dNOU
|
050 |
|
|aQA280|b.N54 2019
|
095 |
|
|aLB|bLBF|cE020199|dQA280|e.N669|y2020|fWJ|n1856|pBook|tLCC
|
100 |
1
|
|aNielsen, Aileen.
|
245 |
10
|
|aPractical time series analysis :|bprediction with statistics and machine learning /|cAileen Nielsen.
|
260 |
|
|aBeijing ;|aSebastopol, CA :|bO'Reilly Media, Inc.,|cc2020.
|
300 |
|
|axvi, 480 p. :|bill. ;|c24 cm.
|
504 |
|
|aIncludes bibliographical references and index.
|
505 |
0
|
|aTime series: an overview and a quick history -- Finding and wrangling time series data -- Exploratory data analysis for time series -- Simulating time series data -- Storing temporal data -- Statistical models for time series -- State space models for time series -- Generating and selecting features for a time series -- Machine learning for time series -- Deep learning for time series -- Measuring error -- Performance considerations in fitting and serving time series models -- Healthcare applicaitons -- Financial applications -- Time series for government -- Time series packages -- Forecasts about forecasting.
|
520 |
|
|a"Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challenges in time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly."--Amazon.com.
|
650 |
0
|
|aTime-series analysis|xData processing.
|
650 |
0
|
|aMachine learning.
|
650 |
0
|
|aPython (Computer program language)
|
650 |
0
|
|aR (Computer program language)
|